
IEEE INTERNET OF THINGS JOURNAL 1

UPEGSim: An RL-Enabled Simulator for
Unmanned Underwater Vehicles Dedicated in the

Underwater Pursuit-Evasion Game
Jingzehua Xu*, Student Member, IEEE, Guanwen Xie*, Student Member, IEEE, Zekai Zhang,

Xiangwang Hou, Graduate Student Member, IEEE, Shuai Zhang, Member, IEEE,
Yong Ren, Senior Member, IEEE and Dusit Niyato, Fellow, IEEE

Abstract—Unmanned underwater vehicles (UUVs) have been
widely used in various ocean applications such as underwater
exploration and data collection. And the underwater pursuit-
evasion game (UPEG) is the key to efficient implementation of
other tasks, holding significant research value. However, testing
the UPEG task in real ocean environment is both costly and risky,
and currently, UUV control algorithms that rely on specific en-
vironmental models struggle to complete the complicated UPEG
task. To address above challenge, we propose UPEGSim, a UUV
simulator specifically designed for the UPEG task. Built through
Gazebo and ROS, UPEGSim provides a reinforcement learning
(RL) environment to train UUVs for improving the intelligent
performance in the UPEG task. Furthermore, we propose an
efficient UPEG training framework (ETFDU), which includes
multi-agent decentralized training and execution techniques,
scene transfer training methods, and offline RL techniques based
on decision transformer, to facilitate efficient UUV training.
Through training on the UPEG task in UPEGSim, we validate the
effectiveness and feasibility of the proposed UPEGSim simulator
and the ETFDU training framework.

Index Terms—Unmanned underwater vehicles, underwater
pursuit-evasion game, simulator, Gazebo, ROS, reinforcement
learning, efficient training framework.

This work of Xiangwang Hou was supported by the National Natural
Science Foundation of China under Grant 623B2060. This work of Yong
Ren was supported in part by the National Natural Science Foundation
of China under grant No. 62127801, and in part by the project ‘The
Verification Platform of Multi-tier Coverage Communication Network for
Oceans (LZC0020)’ of Peng Cheng Laboratory. This work of Dusit Niyato
was supported in part by the National Research Foundation, Singapore, and
Infocomm Media Development Authority under its Future Communications
Research & Development Programme, Defence Science Organisation (DSO)
National Laboratories under the AI Singapore Programme (FCP-NTU-RG-
2022-010 and FCP-ASTAR-TG-2022-003), Singapore Ministry of Education
(MOE) Tier 1 (RG87/22), and the NTU Centre for Computational Technolo-
gies in Finance (NTU-CCTF). (Corresponding author: Xiangwang Hou.)

This article has be presented in part at the IEEE World Congress on
Computational Intelligence (WCCI), Yokohama, Japan, in July 2024.

J. Xu, G. Xie and Z. Zhang are with the Tsinghua Shenzhen International
Graduate School, Tsinghua University, Shenzhen, 518055, China. E-mail:
{xjzh23, xgw24, zhangzej21}@mails.tsinghua.edu.cn.

X. Hou is with the Department of Electronic Engineering, Tsinghua
University, Beijing, 100084, China, and with the College of Computing and
Data Science, Nanyang Technological University, Singapore, 117583. E-mail:
xiangwanghou@163.com.

Y. Ren is with the Department of Electronic Engineering, Tsinghua Uni-
versity, Beijing, 100084, China. E-mail: reny@tsinghua.edu.cn.

S. Zhang is with the Department of Data Science, New Jersey Institute of
Technology, State of New Jersey, 07450, USA. E-mail: sz457@njit.edu.

D. Niyato is with the College of Computing and Data Science, Nanyang
Technological University, Singapore, 117583. E-mail: dniyato@ntu.edu.sg.

* These authors contributed equally to this work.

I. INTRODUCTION

INTERNET of underwater Things (IoUT), as an important
part of marine research and resource development, has

received extensive attention [1]. As a powerful promoter of
IoUT, unmanned underwater vehicles (UUVs) can adapt to
the requirements of various IoUT tasks such as environmental
monitoring, data collection [2], and underwater pursuit-evasion
game (UPEG) [3], due to their flexible and autonomous
characteristics [4]. Among these applications, UPEG is the key
to efficient implementation of other tasks [3]. However, con-
sidering the high requirements for UUVs’ real-time decision
making capacity and collaboration between them in the UPEG
task, it is urgent to study the advanced control policy of UUVs
[3]. Nevertheless, there are two main challenges in the UPEG
task. On the one hand, it is dangerous and inefficient to con-
duct experiments in real environments [5]. On the other hand,
various previous work focus on utilizing learning methods
to investigate the UPEG task, which primarily showcase low
efficiency and the inadaptability to the uncertain and dynamic
ocean environment.

Simulators are considered to be risk-free and reliable tools
that can provide different test scenarios and obtain a large
amount of test data, which makes the design and verification
process of robots more efficient and economical, and has
achieved great success in various applications of space-based
robots and land-based robots in recent years. For example, Mo
et al. [6] developed Terra, an autonomous vehicle simulation
framework, to guide it to navigate efficiently in complex
environments. Dai et al. [7] developed the simulation platform
RFlySim for different types of unmanned aerial vehicles
(UAVs), aiming to improve the development efficiency of
UAVs and ensure the safety of testing. In [8], the authors
developed a virtual prototype environment for vehicle system
modeling and simulation to assist designers to make the
best design and explore vehicle safety issues. In contrast,
UUV simulation technology has progressed slowly because
underwater scenarios are less attractive and it is difficult to
simulate the interaction between the marine environment and
underwater vehicles.

Currently, there are already some underwater simulation
platforms [9]–[13], which are developed for specific tasks.
In [14], the authors proposed a simulation platform that can
simulate the intervention tasks of underwater vehicles, laying



IEEE INTERNET OF THINGS JOURNAL 2

the foundation for the realization of a general and intelligent
UUV simulation platform. However, the platform is difficult
to scale to multi-UUV collaboration tasks. Zhang et al. [15]
developed a modular UUV simulation platform based on the
robot operating system (ROS) and the robot simulator Gazebo,
which modularized the sensor, simulation environment, UUV
model and programming interface to support intelligent UUV
formation control. However, the Matlab-enabling simulator
greatly limits the scope of application and is not equipped with
advanced learning-based control algorithms for further intel-
ligence enhancement. In recent years, reinforcement learning
(RL) has been successful in complex tasks for different types
of robots, such as manipulation [16], navigation [17], planning
[18], [19], and interaction [20], [21]. And RL’s adaptability to
uncertain environment and is believed to be a powerful tool to
improve the UUV intelligence. However, using RL algorithms
to train UUVs in underwater environments often presents
challenges such as low sampling efficiency and poor training
stability. Therefore, how to better employ RL to realize multi-
UUV training, has become a new research topic.

It can be seen that various previous researches have been
conducted on RL-enabled methods to investigate the UPEG
task. Sun et al. utilized the multi-step Q-learning algorithm to
realize multi-UUV cooperative UPEG, while addressing the
challenges posed by ocean currents and obstacles in complex
underwater environments [22]. Yu et al. introduced Nash
equilibrium into the RL training of multi-UUV, while using
dynamic extended form game. And then the pursuit UUVs
in the UPEG task are decomposed from many-to-one game to
one-to-one game, which reduces the computational complexity
[23]. However, the aforementioned algorithms often lead to a
non-stationary situation, bringing difficulties to each UUV to
learn a stable strategy. The validation of the aforementioned
methods is often conducted in ideal simulated environments,
which has its limitations. In contrast, the simulator offers more
realistic scenarios, accurately simulating the behavior of UUVs
in UPEG tasks, thereby enhancing the realism and reliability
of the test results.

Based on the above analysis, this paper developed UP-
EGSim, an RL-enabled simulator for UUVs dedicated in the
UPEG task, aiming to improve the intelligence of UUVs to
efficiently complete the UPEG task. Our main contributions
can be summarized as follows:

• To the best of our knowledge, this is the first UUV
simulator that is dedicated in the UPEG task, which is
built through Gazebo and ROS, while providing a tailored
RL environment to realize intelligence enhancement for
UUVs to complete the UPEG task. It significantly im-
proves the training intelligence of the simulator, and gets
superior feasibility and performance in the UPEG task.

• To progressively accomplish the UPEG task and intel-
ligence enhancement, we propose an efficient training
framework dedicated for UPEG (ETFDU), which in-
cludes multi-agent independent SAC (MAISAC) with de-
centralized training and decentralized execution (DTDE)
technology, scenario transfer training (STT) technol-
ogy, and decision transformer (DT)-based offline RL
technique. This comprehensive framework significantly

TABLE I
MAIN SYMBOLS AND EXPLANATIONS.

Symbols Definition
MR Inertial matrix
MA Additional mass matrix
CR Centrioforce matrix
CA Coriois centripetal force matrix

D (vr) Damping matrix
G0 restoring forces of gravity
G(η) restoring forces of buoyancy
τ Input control force and torque
vr Relative velocity vector
η Pose vector

Q1
i , Q2

i Two action value functions
πθi Policy function

Θ1
i , Θ2

i Critic networks
Θ̃1

i , Θ̃2
i Corresponding target networks

LQ1
i

, LQ2
i

Loss function of Q1
i and Q2

i

Lπθi
Loss function of the policy

L (∂i) Loss function of the regularization coefficient
Di Replay buffer

VΘ̃1
i
(·), VΘ̃2

i
(·) State value functions

∂i Regularization coefficient
π∗ Expert policy
τi Offline dataset
κ Soft updating rate
λ Learning rate
∇ Gradient
r̂ti Returns-to-go

LMSE Mean-squared error
T Maximum number of control time steps
γ Discounting factor

Si, si State space and state
Ai, ai Action space and action

vi(t), ωi(t) Velocity and angular velocity
vmin, ωmin Minimum velocity and minimum angular velocity
vmax, ωmax Maximum velocity and maximum angular velocity

ri Reward function
li↔j
min , li↔T

max Safe distance and target distance

boosts the simulator’s training capabilities in the UPEG
task.

• Simulation experiments demonstrate the superior perfor-
mance of our proposed training techniques in the UPEG
task, thereby proving the effectiveness of the ETFDU
framework. Analysis of the influence of maximum veloc-
ity, maximum angular velocity, and entropy regularization
coefficient further demonstrates the adaptability and ro-
bustness of the proposed methods. Above results validate
the feasibility of UUV training for the UPEG task using
our proposed UPEGSim.

The rest of this paper is organized as follows. In Section
II and III, the related work and framework of UPEGSim
are given in detail. In Section IV, the modeling of UPEG,
framework of ETFDU, and several RL training techniques are
presented. In Section V, simulation experiments are carried
out to verify the feasibility of UPEGSim for training UUVs
to complete the UPEG task, followed by the conclusion in
Section VI. Explanations of the symbols mainly used in this
paper are listed in Table I.

II. RELATED WORKS

The SWARMs project funded by the European Union first
focused on the development of underwater simulators, and



IEEE INTERNET OF THINGS JOURNAL 3

developed the simulator UWSim [31] based on the graphics
engine OpenSceneGraph [32], which can realize the basic
configuration of underwater scenarios, vehicles and objects.
However, XML description files need to be written frequently
to set up new simulations, which is not user-friendly. Thanks to
long-term open source and maintenance, Gazebo is considered
to be the best physics engine for simulating all kinds of robots.
In [14], based on Gazebo and UWSim, UUV simulator is
developed to simulate multiple underwater navigation inter-
vention tasks, this simulator has a certain degree of integration,
but it cannot be applied to specific and difficult task. Nie
et al. combined the Unity3D simulation engine with fluid
mechanics software to simulate the working state of UUV.
However, this simulator has limited practicability in improving
the intelligence of UUVs in the underwater task, especially in
the UPEG task [34].

RL methods can collect data through interaction with
the environment to train robots to solve various complex
practical problems in the absence of prior information and
solutions [35]–[37]. Creating RL environments with simulators
is currently a hot research topic due to realistic physical
approximations and the ease of transferring policies to real-
world robots. Unfortunately, only FishGym [30] has developed
a RL module for underwater simulator, but this RL module is
only specially designed for the attitude control of bionic fish.
In addition, gym-pybullet-drones [41], Panda-gym [42] and
other RL frameworks used for various kinds of robots do not
support multi-robot learning research and only support limited
RL categories, which greatly restricts the development.

Currently, the prevalent methods for UPEG include neural
networks [26], [27], control models [28], and game theory
[29]. In [43], a particle swarm optimization algorithm was uti-
lized for real-time rescue assignments in multi-UUV systems.
In [44], [45], game theory was employed to analyze interac-
tions between multi-UUV systems and targets, resulting in the
development of hunting strategies. Nonetheless, in real-world
scenarios, these model-based multi-UUV control strategies
require real-time adjustments of control parameters, making
them unsuitable for the highly dynamic underwater environ-
ments. Multi-UUV control strategies based on multi-agent
reinforcement learning (MARL) have demonstrated superior
performance in UPEG. Wei et al. introduced a MARL strategy
for multi-UUV underwater target hunting tasks grounded in
differential games [46]. Xia et al. developed an end-to-end
MARL framework for multi-agent target tracking, enhancing
the success rate of target acquisition [47]. However, these
MARL-based approaches suffer from issues such as unstable
training and low sampling efficiency, which hinder the training
of an effective hunting model.

Based on above analysis, there is currently no simulator for
UUVs dedicated in the UPEG task, integrating training intel-
ligence with RL environment. Thus we propose UPEGSim, a
simulator dedicated in UPEG, aiming to realize intelligence
enhancement for UUVs in the UPEG task.

III. UPEGSIM FRAMEWORK

In this section, we first introduce the overall framework of
UPEGSim, and then describe the UPEG’s problem statement,

Simulator layer High-level control layer Low-level control layer

UUV entity

Environment

InteractionReal-time

Sensors
Plugin

Dynamic
model

UUV 1 UUV 2 UUV n

Task Env Robot Env

Gazebo Env

Underlying
Controller

State
Estimator

Low-level
Sensors

Fig. 1. Illustration of the framework of UPEGSim, which is mainly divided
into simulator layer, low-level control layer and high-level control layer.

followed by construction of 3D underwater scenario, UUV
models and sensors, and UUV dynamics in the proposed
UPEGSim.

A. The Overall Framework

The overall framework of UPEGSim is shown in Fig. 1,
which is mainly divided into simulator layer, low-level con-
trol layer, high-level control layer and reserved programming
interface, all of which support secondary development and
customization. The Gazebo-based simulator layer is mainly
responsible for creating UUV simulation entity and virtual
scenario. The UUV entity contains dynamic models and sensor
plugins. The low-level control layer mainly contains core
functions such as state estimation and underlying controller.
The high-level control layer is connected to the programming
interface and supports multi-agent tasks. These three layers
communicate internally to subscribe information and issue
commands. In addition, referring to the work in [48], we
develop RL environment in our simulator by combining RL
algorithms with Gazebo and ROS. It mainly includes Gazebo-
Environment class (GazeboEnv), Robot-Environment class
(RobotEnv) and Task-Environment class (TaskEnv). Gaze-
boEnv is connected to Gazebo and can reset, pause, and
resume simulations. The RobotEnv, inherited from GazeboEnv,
handles the UUV’s information and controls it. TaskEnv,
inherited from RobotEnv, contains the main elements needed
for RL to determine the task structure that the agent needs to
learn.

B. Problem Statement

The goal of this article is to utilize UPEGSim to realize
the intelligence enhancement of UUVs to accomplish the
UPEG task that multi-UUV pursue the target in the underwater
environment. Based on this, the game rules of UPEG are given
as follows:

Background: Multi-UUV pursue single target in the under-
water environment. For the convenience of research without
losing the rigor, the UUVs and the target are considered
carrying out the UPEG task on the fixed 2D-plane.

Initial States: The UUVs are labeled as “UUV 1” to “UUV
N” and the moving target is labeled as “Target”. And they
are randomly distributed in the underwater environment. The
initial linear and angular velocities of UUVs and target are



IEEE INTERNET OF THINGS JOURNAL 4

(a) (b)

(c)

Fig. 2. Seabed terrain construction process via Blender and Gazebo. (a) The
seabed terrain modeled by original height map in Blender. (b) The seabed
terrain rendered using Blender. (c) The visualization of the terrain.

set to 0. Additionally, the position of UUV i at time t can
be denoted as P i(t) = [xi(t), yi(t)]

T, and the position of the
target can be denoted as P T (t) = [xT (t), yT (t)]

T.
Assumption: During the whole UPEG process, we consider

the position of the UUVs and target can be captured and
reported to UUVs via underwater positioning equipment [49].

C. Construction of 3D Underwater Scenario

The fidelity of the virtual ocean environment directly affects
the accuracy of the simulation, and the key is to accurately
depict the seabed, whether it is to support bathymetry missions
or just to make the scenario look more realistic. Based on
above intuition, UPEGSim provides a module to construct the
3D underwater scenario. With several realistic Gazebo worlds
already available in UUV Simulator, this work chooses the
Ocean Waves World [14] with wave shaders for secondary
development, focusing on accurate modeling of the seabed
based on real ocean environment data.

The challenge of constructing a 3D underwater scenario is
to accurately model the seabed according to real terrain data.
Our seabed modeling process is as follows: first, the Anaconda
ogr2ogr library is used to view the hierarchical information of
the S-57 chart and perform non-visual processing operations,
including format conversion [15]. Then the vector data is
converted into raster data by QGIS or Arcmap software and
the terrain file (.tif file) is obtained. This is then converted
into a height map (.png file) using Global Mapper software.
In addition, the resolution of the pixel is modified to improve
the precision of the generated terrain, and the blank area is
interpolated. The derived height map is then imported into
Blender for modeling the terrain and applying realistic textures
to the model. The render result (.dae file) is then exported to
ROS along with the texture (.jpg file). In ROS, these files are

(a) (b)

Fig. 3. Two models equipped in UPEGSim. (a) The work-class UUV, which
is suitable for underwater operations. (b) The spherical UUV for exploration
in narrow spaces.

integrated and the terrain is saved as a .world file via Gazebo.
Finally, the configuration file is manually edited to introduce
rigidity parameters to simulate accurate collision effects within
the Gazebo simulation environment. The visualization process
is delineated in Figs. 2(a)-2(c).

D. UUV Models and Sensors

The model of UUV entity can be produced by software such
as SolidWorks or directly use existing open source vehicle
models. To be specific, SolidWorks is first used to model the
size, material, and shape of the underwater vehicle body, and
then, the layout of the relevant actuators is carried out. After
that, the CAD model is exported into stl and dae files and
based on which the xacro file is written. Finally, this UUV
model can be created in Gazebo by converting the xacro file
to URDF file [15]. To meet different mission requirements, our
simulator is equipped with two vehicle models, the work-class
UUV and spherical UUV, as shown in Fig. 3. In this study, the
work-class UUV and spherical UUV, which respectively have
superior thruster performance for straight sailing and swerving,
is set to achieve a higher maximum linear and angular velocity,
respectively [14].

In addition, UPEGSim provides basic sensors such as the
underwater camera, inertial sensing unit, and subsea pressure,
similar to the UUV Simulator [14]. All sensors share a
common error model based on the first-order Gauss-Markov
equation

X = S + n+Gs, (1a)

ṅ = −1

τ
+Gb. (1b)

According to the above formula, the sensing signal X at
time t consists of real signal S, current bias n and additive
noise Gs. Gb describes the random drift characteristic related
to the time constant τ .

E. UUV Dynamics

The proposed UPEGSim equips a UUV dynamics module,
providing a dynamic system of the UUV that is highly
correlated with the control system, which directly determines
the accuracy of the simulator. According to Fossen’s motion
equation [14], the dynamic system model considering hydro-
dynamics and hydrostatic forces can be expressed as

η̇ = J (η)vr, (2)



IEEE INTERNET OF THINGS JOURNAL 5

(MR +MA)v̇r + (CR (vr) +CA (vr))vr+

D (vr)vr +G0 +G(η) = τ ,
(3)

where MR and MA denote inertial matrix and additional
mass matrix, respectively, and CR and CA represent centrio-
force matrix and Coriolis force matrix, respectively. D (vr) is
the damping matrix describing viscous hydrodynamic force,
and G0 and G(η) are the restoring forces of gravity and
buoyancy, respectively, while τ is the input control force and
torque. Finally, vr represents the relative velocity vector and
η stands for the pose vector. Assume αo denotes the UUV’s
yaw angle, we can define J (η) as the transformation matrix,
and we have

J (η) =

 cosαo − sinαo 0
sinαo cosαo 0
0 0 1

 . (4)

For the convenience of investigation, in this we simplify
the motion of six degrees of freedom into on the plane with
a fixed depth. The motion equation of a rigid body with three
degrees of freedom is defined by default as

MRv̇ +CR(v)v +G0 = τ g, (5)

where τ g is external force and torque, which can be calculated
by using related plugins. To facilitate Gazebo to integrate the
motion equation shown in Eq. (5), it is necessary to modify it
with reference to Eq. (3), that is, all relevant terms in Eq. (3)
are moved to the right to correct τ g , as shown in Eq. (6)

τ g = τ −MAv̇r −CA (vr)vr −D (vr)vr −G(η). (6)

IV. PROBLEM FORMULATION AND TRAINING
TECHNIQUES

In this section, we first describe the problem formulation of
UPEG, and then introduce the designed state space, action
space and reward function for RL training. Furthermore,
training techniques embedded in UPEGSim, such as multi-
agent DTDE, STT and offline RL training based on decision
transformer are detailed. Finally, based on these training
techniques, we propose a new RL training framework named
ETFDU, and the overall framework is described in detail.

A. Underwater Pursuit-Evasion Game Modeling

In the UPEG task, we utilize RL algorithms to train UUVs
for navigation and pursuing the moving target (spherical robot)
in the complex underwater environment, and meanwhile to
train the moving target to avoid being pursued by UUVs. In
RL, agents learn policies for specific tasks through repeated
interactions with the environment. Given a state si, RL tries
to learn a parametric policy πθ to produce an action ai. The
agent can take this action to move to the next state si+1 and
evaluate the reward ri in that state. The agent iterates the
transformation until one of the exit conditions is met, such as
a limited time span or the success/failure of a specific task.
The parametric policy πθ is learned by finding the optimal
parameter θ∗ that maximizes the expected total reward

J (θ) = Eτ∼pθ(τ)

[
T∑

t=0

γtrt

]
, (7)

where T is the maximum number of control time steps, γ
represents the discounting factor, and τ denotes the sampled
trajectory containing a sequence of states and actions. In the
following, we specify in detail the specific designs on how we
train the UPEG task.

The process of the UPEG task can be modeled as a
Markov decision process (MDP), which can be formulated by
a quintuple [55]

M = (S,A,P,R, γ), (8)

where S, A, R represent state space, action space and
reward function, respectively, while P denotes state transition
probability distribution, and γ is discount factor ranging from
0 to 1.

Given that there are total N agents in the environment, so
we can respectively represent state space, action space and
reward function as follows:

S = [S1,S2, · · · ,Si−1,Si], (9)

A = [A1,A2, · · · ,Ai−1,Ai], (10)

R = [r1, r2, · · · , ri−1, ri], (11)

where Si, Ai and ri denote the state space, action space and
reward function of the ith agent, respectively.

To be specific, the details of the designed state space, action
space and reward function are detailed as follows:

1) State Space Si: We consider that each agent’s state is
observable, and the state of the ith agent, si(t), belongs to the
state space Si, which can be represented as

si(t)=
[
li(t), l(p−e)i(t),min(li(t)) , αoi(t), ϑ(t)

]
, (12)

where li (t) represents the distance of surroundings, while
l(p−e)i

(t) denotes the distance between the ith agent and the
target if the ith agent is a UUV to track the target, or the
distance between the nearest UUV and the target if the ith
agent is the target. Additionally, αoi(t) and, ϑ(t) represent
the yaw angle of the ith agent and the orientation angle from
the UUV to the target.

2) Action Space Ai: The ith agent selects its next action
ai(t) from action space Ai at each step, guided by environ-
mental feedback and its motion model

Ai = [vmin, vmax]× [ωmin, ωmax] , (13)

ai(t) = [vi(t), ωi(t)] . (14)

where vi(t) and ωi(t) stand for the expected linear velocity
and angular velocity, respectively. But notably, For the agent
to reach the expected speed, it requires a short period of time
and the acceleration or deceleration process due to practical
and environment limitations.

3) Reward Function ri: The agent updates its policy based
on action and corresponding rewards, necessitating a reward
function that balances obstacle avoidance and pursuit-evasion
for UUVs and the target.

Collision avoidance: For safe pursuit and evasion between
UUVs and the target, a minimum safe distance li↔j

min must be



IEEE INTERNET OF THINGS JOURNAL 6

established to prevent collisions, introducing the design of the
reward function rCi(t)

rCi(t)=−400 ceil
(
li↔j
min/min (li(t))

)
,∀i, j≤N, i ̸=j, (15)

where ceil(x) is the binary function, which means that ceil(x)
is equal to 1 when x ≥ 1, and equal to 0 when x ≤ 1, while
N represents the number of agents.

Encourage tracking: Leveraging reward signal rE1 i, we
motivate UUVs to navigate purposefully towards the target
and guide the target to the target point

rE1 i(t)=

{
0.25, li↔T (t−1) > li↔T (t),
−0.25, li↔T (t−1) < li↔T (t),

i=1, . . . , N.

(16)
To preserve consistent performance of each UUV through-

out the navigation process, we establish li↔T
max as the target

distance, allocating rewards according to each UUV’s tracking
outcomes:

rE2 i(t) = 900 ceil
(
li↔T
max /l

i↔T (t)
)
, i = 1, . . . N, (17)

where li↔T signifies the distance between the UUV and target
for each UUV to track the target, while represents the target’s
distance to the target point for the target.

To summarize, the total reward ri(t) can be represented as
follows

ri(t) = δCrCi
(t) + δE1

rE1 i(t) + δE2
rE2 i(t), (18)

where δC , δE1
, and δE2

represent the weight coefficients as-
sociated with the respective reward functions rCi (t), rE1 i (t)
and rE2 i (t).

B. Multi-Agent Decentralized Training with Decentralized Ex-
ecution Technique

Traditional RL algorithms cannot adapt to the UPEG task
considered in this paper. Considering that soft actor-critic
(SAC) can naturally balance exploration and exploitation
compared with other popular RL methods such as proximal
policy optimization (PPO) and deep q-network (DQN), it can
realize efficient learning in a wide range of tasks [56]. So
we extend the SAC algorithm to multi-agent independent
SAC (MAISAC) via DTDE to train UUVs in parallel and
independently, enabling them to perform their own tasks in
the unknown dynamic environment. In MAISAC, UUV i has
two action value functions Q1

i and Q2
i , and a policy function

πθi . To tackle the challenge of Q value overestimation, we
employ a pair of critic networks denoted as Θ1

i and Θ2
i , along

with their corresponding target networks Θ̃1
i and Θ̃2

i . Opting
for the network exhibiting a lower Q value serves to alleviate
the overestimation issue. Consequently, the loss functions of
Q1

i and Q2
i are denoted as

LQ1
i
(Θ1

i ) = E(st,at,rt,st+1)∼Di

[
1

2
QΘ1

i
(st,at)−

(
rt + γVΘ̃1

i
(st+1)

)]2

,

(19)

LQ2
i
(Θ2

i ) = E(st,at,rt,st+1)∼Di

[
1

2
QΘ2

i
(st,at)−

(
rt + γVΘ̃2

i
(st+1)

)]2

,

(20)

where Di denotes the replay buffer, VΘ̃1
i
(·) and VΘ̃2

i
(·) are

the state value functions parameterized by Θ̃1
i and Θ̃2

i , re-
spectively. To prevent the UUV i from becoming trapped in
local optimal policy, we introduce entropy regularization and
represent VΘ̃1

i
(st+1) and VΘ̃2

i
(st+1) as follows:

VΘ̃1
i
(st+1)=min

j=1,2
QΘ̃j

i
(st+1,at+1)−∂ilog(πθi(at+1|st+1)), (21)

VΘ̃2
i
(st+1)=min

j=1,2
QΘ̃j

i
(st+1,at+1)−∂ilog(πθi(at+1|st+1)), (22)

where ∂i is the regularization coefficient, determining the
weight placed on entropy in the policy. Subsequently, the loss
function for the policy can be derived from the simplified KL
divergence

Lπθi
(θi) = Est∼Di,at∼πθi

[
∂i log (πθi (at | st))−

min
j=1,2

QΘj
i
(st,at)

]
.

(23)

To address the issue of non-differentiability when sampling
actions from the Gaussian distribution N the reparameteri-
zation trick is introduced, allowing the policy function to be
expressed as at = fθi (ϕt; st), where ϕt represents a noise
random variable. By considering two action value functions
simultaneously, the policy’s loss function is

Lπθi
(θi)=Est∼Di,ϕt∼N

[
∂i log(πθi(fθi(ϕt; st)|st))−

min
j=1,2

QΘj
i
(st, fθi (ϕt; st))

]
.

(24)

To automatically adjust the entropy regularization term, the
goal of RL can be reformulated as a constrained optimization
problem

max
πθi

Eπθi

[∑
t

rt

]
s.t.Est∼Di,at∼πθi

[−log(πθi(at | st))]≥H0.

(25)
More intuitively, the objective is to maximize the expected

total reward while ensuring that the entropy mean exceeds H0.
By simplifying Eq. (27), we can derive the loss function for

L (∂i) = Est∼Di,at∼πθi
[−∂i log (πθi (at | st))− ∂iH0] .

(26)
The Eq. (27) and Eq. (28) imply that if the policy entropy

is below the desired value H0, the training target L (∂i)
will raise the value of ∂i. Consequently, it will amplify the
significance of the corresponding term in the policy entropy
during the process of minimizing the loss function Lπθi

(θi).
Conversely, if the policy entropy exceeds H0, L (∂i) will lower
∂i, thereby directing the policy training towards prioritizing
value improvement.



IEEE INTERNET OF THINGS JOURNAL 7

Source 

scenario

Transition 

scenario 1

Transition 

scenario n

Target 

scenario 

…

Scenario transfer RL training framework

Trained model

Source 

model 

Target 

model 
…Model 1 Model n

Environment

Agent

actionstatereward

Loading model

Fig. 4. Schematic diagram of the STT method, which illustrates training
agents from the source scenario to the target scenario.

C. Scenario Transfer Training Method

For RL module in UPEGSim, to overcome the problems
of insufficient reward accumulation sparse reward and slow
learning convergence, the STT method is proposed to assist the
training of agents in the complex scenario, and its schematic
diagram is shown in Fig. 4 [13]. To be intuitive, before
training agents in the target scenario, it is necessary to train
it first in the source scenario and transition scenarios, which
are from easy to difficult and similar to the target scenario,
to accumulate experience and gradually help agent realize
policy improvement. The model obtained after training in the
previous scenario is stored in the memory and loaded into the
next scenario as the basic model, and the parameters of the
model will be updated in the training process at next stage.

D. Offline RL Training Based on Decision Transformer

Offline RL algorithms enable agents to realize policy
improvement via the existing dataset to accomplish related
tasks without interacting with the environment, which further
reducing time and computing costs. Among these algorithms,
DT acts as a significant method to abstract offline RL prob-
lems into seq2seq problems, which is also embedded in our
proposed UPEGSim, and is mainly based on transformer
architecture. According to [57], transformer consists of stacked
self-attention layers with residual connections. Each self-
attention layer receives n embeddings {xi}ni=1 corresponding
to unique input tokens, and outputs n embeddings {zi}ni=1,
preserving the input dimensions. This is achieved by mapping
tokens to key (ki), query (qi), and value (vi) through linear
transformations. The self-attention layer calculates the output
for each token by weighting values based on the dot product
between query and key. This mechanism establishes associa-
tions between states and returns by assigning “credit” based
on similarity

zi =

n∑
j=1

softmax
(
{< qi, kj′ >}nj′=1

)
j
· vj . (27)

Algorithm 1 ETFDU Framework
1: Initialize the training environment, including the replay

buffer Di, critic network and corresponding target net-
work, policy network parameters, entropy regularization,
and soft updating rate Θ1i , Θ2i , Θ̃1i , Θ̃2i , θi, ∂i, κ of
UUV i. And in the following steps, the symbol ∼ means
sampling.

2: for each episode k do
3: Reset the training environment and total reward.
4: for each time step t do
5: Sample an action according to the policy:
6: ati ∼ πθi (ati |sti);
7: Collect the next state from environment:
8: st+1i ∼ P(st+1i |sti ,ati);
9: Calculate reward rti by Eq. (15) - Eq. (18);

10: Store sampling tuple (sti ,ati , rti , st+1i) into Di.
11: Extract N batches tuple of data from Di.
12: Θji ← Θji − λΘji

∇Θji
JΘji

(Θji) , j = 1, 2.
13: θi ← θi − λθi∇θiJθi (θi).
14: ∂i ← ∂i − λ∂i

∇∂i
J∂i

(∂i).
15: Θ̃ji ← κΘji + (1− κ)Θ̃ji , j = 1, 2
16: end for
17: end for
18: Repeat step (2) to step (17) via STT method from the

source scenario to the target scenario.
19: Collect trajectories from the offline dataset τi using expert

policy by Eq. (25).
20: Sample n batches of sequence length K from the offline

dataset τi.
21: for each gradient step j do
22: Update the models of Decision Transformer by Adam

updating on θ′i on LMSE (θ′i) via Eq. (30).
23: end for

E. Description of Our Proposed Training Framework

Due to the inability to adapt to the highly dynamic UPEG
environment, traditional RL algorithms have shortcomings
such as low training efficiency, poor scalability, and complex
calculation when solving the constrained optimization problem
in the previous section. Therefore, we propose the efficient
training framework dedicated for UPEG, which is also named
ETFDU. The diagram of the overall framework is depicted
in Fig. 5, while the pseudo-code is shown in Algorithm 1.
Firstly, the MAISAC algorithm and STT method are utilized
for parallel and independent training of UUVs and the target,
so that they can realize policy improvement efficiently and
perform their own tasks in unknown dynamic environment.
Then, we designate the optimal policy solved by Eq. (27)
as the expert policy π∗ for UUV i to interact with the
environment for data collection, and all trajectories are saved
as the offline dataset, defined as τi

τi = (r̂1i , s1i ,a1i , r̂2i , s2i ,a2i , . . . , r̂Ti
, sTi

,aTi
) , (28)

where r̂ti =
∑T

t′=t rt′i stands for returns-to-go of UUV i.
Then, the DT model is trained based on the obtained offline

dataset to achieve policy improvement for each UUV in the
UPEG. The trained DT model can be used to predict the



IEEE INTERNET OF THINGS JOURNAL 8

Policy improvement

Actor Actor

Critic
Decentralized training

Decentralized execution

Critic N

Environment

Optimal policy 

Environment

Interaction

Offline dataset 

Offline dataset generation

Offline dataset 

Minimize loss

Parameter 
optimization

DT model

Model training

UUV 1 UUVi

Apply to the UPEG

Target

…

Source 
scenario

Target 
scenario STT …

Fig. 5. The overall framework of ETFDU in UPEGSim. Firstly, the MAISAC algorithm and STT method are utilized for parallel and independent training of
UUVs, so that the UUVs can perform their own tasks in unknown dynamic environment. Then, the DT model is trained based on the obtained offline dataset
to achieve policy improvement for each UUV in the UPEG.

real-time action of each UUV based on the initial state and
expected returns-to-go. The optimal policy of DT can be
obtained according to the Eq. (31)

max
πθ′

i

J ′ (θ′i) = max
πθ′

i

E

[
T=∞∑
t=1

rti

]
, (29)

where πθ′
i

denotes policy of UUV i, and θ′i denotes the
parameters of the policy, which depends on the model training
via DT.

By giving the initial returns-to-go, the prediction head
corresponding to the input token si(t) is trained to predict
action âi(t) with mean-squared error LMSE for continuous
actions. So the model training objective is to minimize the
error, which is shown in Eq. (32)

max
πθ′

i

J ′(θ′i)=min
πθ′

i

LMSE(θ
′
i)=min

πθ′
i

− 1

N

N∑
j=1

(aj−âj)
2

. (30)

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first introduce the experiment settings
for the simulation experiments, and then experiment results
and discussions are detailed to verify the practicality and
effectiveness of UPEGSim.

A. Experiment Settings

The experiments are conducted using Ubuntu 18.04, with
Gazebo 9 and ROS Melodic. And the utilized python and
pytorch versions are 3.8 and 1.12.0, respectively. Other settings
mainly include two parts, such as the simulation environment
parameters and the algorithm parameters. In the simulation,
according to their different characteristics, the UUV has more
straight-line traveling capacity, but less maneuverability, while
the spherical robot is just the opposite. Based on the above
analysis, the UUV’s maximum velocity is set to 3.0 m/s [14],
[15], which is 1.0 m/s higher than the spherical robot. On the
other hand, the spherical robot’s maximum angular velocity

TABLE II
PARAMETERS OF SIMULATION EXPERIMENTS.

Parameters Values
Max velocity (UUV) 3.0 m/s

Max velocity (Spherical robot) 2.0 m/s
Max angular velocity (UUV) 1.5 rad/s

Max angular velocity (Spherical robot) 3.0 rad/s
Experimental site size 400 m× 300 m

Safe distance li↔j
min 16 m

Target distance li↔j
max 20 m

Learning rate λ 3× 10−4

Discount factor γ 0.99
Soft updating rate κ 0.01

Initial regularization coefficient ∂ 0.1
Replay memory capacity C 5× 105

Sample batch size B 256
Maximum steps per episode T 6000

Time step per episode ∆t 0.25
Training episodes ε 100
Hidden layer size 256

Number of steps per iteration 5000

is set to 3.0 rad/s, which is 1.5 rad/s higher than the UUV.
Moreover, the size of the experiment site is 400m×300m,
while safe distance li↔j

min is set to 16m, and target distance li↔j
max

is set to 20m. During each episode, a maximum of 6000 steps
(T ) are allowed, with a simulation time step (∆t) of 0.25s.
Besides, the implementation of ETFDU framework incorpo-
rates two stages. In the first stage, the MAISAC algorithm
is employed to optimize the policy and critic networks. To
facilitate network updates, a soft update coefficient (κ) of
0.01 is utilized, while the regularization coefficient of entropy
(∂) is initialized to 0.1. For efficient training, the batch size
for network parameters updating is set to 256. In terms of
network architecture, a hidden layer size of 256 is utilized.
In the second stage of ETFDU, DT is employed, and the
parameters are mainly referenced to [58]. Other parameters
and parameters mentioned above are detailed in Table II for a
summary.



IEEE INTERNET OF THINGS JOURNAL 9

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0
Av

era
ge 

tot
al r

ew
ard

E p i s o d e s

 M A I S A C - S T T  1
 I P P O - S T T  1
 M A I S A C - S T T  2
 I P P O - S T T  2

× 1 0 4

Fig. 6. Average total reward curves of the UUV for different scenarios
changing from the source scenario (STT 1) to the target scenario (STT 2),
which utilizes MAISAC and IPPO for policy improvement via STT method.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

Av
era

ge 
tot

al r
ew

ard

E p i s o d e s

 M A I S A C - S T T  1
 I P P O - S T T  1
 M A I S A C - S T T  2
 I P P O - S T T  2

× 1 0 4

Fig. 7. Average total reward curves of the spherical robot for different
scenarios changing from the source scenario (STT 1) to the target scenario
(STT 2), which utilizes MAISAC and IPPO for policy improvement via STT
method.

B. Experimental Results

According to ETFDU, we first conduct experiments via STT
successively in two different scenarios, such as the source
scenario and the target scenario. The source scenario consists
of an ideal underwater environment, while the target scenario
involves a complex underwater environment with four random
obstacles. Considering the strict requirements of pursuit and
evasion capabilities for both the UUV and target in UPEG, it
is necessary to ensure they can both obtain the expert policy
through RL training, respectively. Based on above analysis,
in the source scenario, we first separately train the UUV and
the spherical robot to approach their own corresponding target
points in the same environment via MAISAC. Furthermore,
we save the network models (.pth files) and then load them
for further RL training and policy improvement in the target
scenario. Besides, to showcase the training efficiency and

0 2 0 4 0 6 0 8 0 1 0 0

0 . 4

0 . 8

1 . 2

1 . 6

2 . 0

0Av
era

ge 
tot

al r
ew

ard

E p i s o d e s

 S T T  p r o c e s s  1  ( v m a x = 0 . 3 0 0 m / s )
 S T T  p r o c e s s  1  ( v m a x = 0 . 3 2 5 m / s )
 S T T  p r o c e s s  1  ( v m a x = 0 . 3 5 0 m / s )
 S T T  p r o c e s s  2  ( v m a x = 0 . 3 0 0 m / s )
 S T T  p r o c e s s  2  ( v m a x = 0 . 3 2 5 m / s )
 S T T  p r o c e s s  2  ( v m a x = 0 . 3 5 0 m / s )

× 1 0 4

Fig. 8. Average total reward curves of the UUV for different scenarios
changing from the source scenario (STT process 1) to the target scenario
(STT process 2), which utilizes MAISAC for policy improvement via STT
method, with vmax ranging from 3.000m/s to 3.500m/s.

0 2 0 4 0 6 0 8 0 1 0 0

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

0

Av
era

ge 
tot

al r
ew

ard

E p i s o d e s

 S T T  p r o c e s s  1  ( � m a x = 3 . 0 r a d / s )
 S T T  p r o c e s s  1  ( � m a x = 3 . 5 r a d / s )
 S T T  p r o c e s s  1  ( � m a x = 4 . 0 r a d / s )
 S T T  p r o c e s s  2  ( � m a x = 3 . 0 r a d / s )
 S T T  p r o c e s s  2  ( � m a x = 3 . 5 r a d / s )
 S T T  p r o c e s s  2  ( � m a x = 4 . 0 r a d / s )

× 1 0 4

Fig. 9. Average total reward curves of the spherical robot for different
scenarios changing from the source scenario (STT process 1) to the target
scenario (STT process 2), which utilizes MAISAC for policy improvement
via STT method, with ωmax ranging from 3.0rad/s to 4.0rad/s.

superior performance of the proposed MAISAC algorithm,
we conduct contrast experiments via MAISAC and the clas-
sical RL algorithm independent proximal policy optimization
(IPPO), respectively. The experiment results of the UUV and
spherical robot in two scenarios are shown in Fig. 6 and Fig.
7.

It is observed that after 100 episodes of training, the
reward curves have converged, indicating that the UUV and
spherical robot have obtained the expert policy through RL
training in the source scenario. Similar to the training in
the source scenario, the reward curves fluctuate initially, but
soon increase and eventually converge again in the target
scenario, which indicates their policies are considered to have
reached an expert level again. Moreover, upon comparing
the curves resulting from the employment of MAISAC and
IPPO algorithm, it is observed that MAISAC can achieve
convergence with greater rapidity compared to IPPO, and it



IEEE INTERNET OF THINGS JOURNAL 10

0 . 1 0 . 2 0 . 3 0 . 40 . 0

0 . 5

1 . 0

1 . 5

2 . 0

1 1 8 1 3 . 4

9 0 4 7 . 0 7 9 7 9 9 . 2 5
8 3 5 8 . 8 7

7 1 6 1 . 0 2 5
8 8 9 9 . 3

6 0 0 7 . 7 7

9 3 8 8 . 1 5

5 2 5 9 . 6 9 5 7 3 2 . 5 5
6 5 9 7 . 8 9

7 3 5 6 . 3 1

3 7 6 0 . 2 4
4 6 0 0 . 2 3

3 2 9 9 . 1
3 9 8 8 . 9 4

Me
an 

of 
tot

al r
ew

ard

E n t r o p y  r e g u l a r i z a t i o n  c o e f f i c i e n t

 U U V  ( m e a n )
 S p h e r i c a l  r o b o t ( m e a n )

- 4
- 2
0
2
4
6
8
1 0 U U V ( v a r i a n c e )

 S p h e r i c a l  r o b o t ( v a r i a n c e )

Va
ria

nce
 of

 to
tal 

rew
ard

× 1 0 4 × 1 0 3

Fig. 10. Mean and variance of total reward curves of the UUV and spherical
robot with entropy regularization coefficient changing from 0.1 to 0.4, which
utilizes MAISAC for policy improvement training.

0 40 80 120 160 200 240 280 320 360 400

X-axis (m)

0

30

60

90

120

150

180

210

240

270

300

Y
-a

xi
s 

(m
)

UUV's target points
Spherical robot's target points
UUV's trajectory
Spherical robot's trajectory

Initial points

Final
points

Fig. 11. The trajectories of the UUV and spherical robot within a single
training episode in the source scenario.

generally yields a more substantial reward. This underscores
MAISAC’s enhanced efficiency in data usage and its overall
superior performance over IPPO.

Besides, ablation experiments are conducted to investigate
the influence of maximum velocity vmax and angular velocity
ωmax on the performance of the UUV and spherical robot
relying on MAISAC for training, respectively. As illustrated
in Fig. 8 and Fig. 9, with the increase of vmax and ωmax,
the average total reward of the UUV and spherical robot in
two scenarios after 100 episodes’ training all reach the expert
level, and rise in general, which demonstrates the adaptability
over changing parameters.

Furthermore, we also investigate the impact of the entropy
regularization coefficient (∂) on the training process. Given
that ∂ plays a pivotal role in balancing the trade-off between
exploration and exploitation, selecting an appropriate value is
essential for policy improvement performance. Specifically, we
modify ∂ ranging from 0.1 to 0.4 and employ the MAISAC
algorithm across 100 training episodes in the source scenario.
Finally, the mean and variance of the total reward are obtained

0 40 80 120 160 200 240 280 320 360 400

X-axis (m)

0

30

60

90

120

150

180

210

240

270

300

Y
-a

xi
s 

(m
)

UUV's target points
Spherical robot's target points
UUV's trajectory
Spherical robot's trajectory
Avoidance radius
Obstacle area

Final
points

Initial
points

Moving direction

Moving direction

Fig. 12. The trajectories of the UUV and spherical robot within a single
training episode in the target scenario.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ra

in
in

g 
lo

ss
 o

f 
M

A
ID

T

UUV 1 UUV 2 UUV 3

1000 1100 1200 1300 1400
0.17

0.18

0.19

0.2

0.21

UUV 1 UUV 2 UUV 3

Fig. 13. The training loss curves of the DT models of three UUVs.

respectively, as shown in Fig. 10, which clearly indicates that
as ∂ rises, there is a general reduction in the mean and a
corresponding increase in the variance. Consequently, an ∂
value of 0.1 is ultimately selected for the training process of
policy improvement to guarantee the efficiency of RL training.

Additionally, we demonstrate the training effect of both the
UUV and the spherical robot towards obtaining expert policies
across two scenarios, depicted via trajectory graphs. Selected
segments of a single episode’s trajectory for each scenario are
presented in Fig. 11 and Fig. 12, respectively. Observations
from these graphs indicate that both the UUV and the spherical
robot have effectively accomplished the objective of navigating
to the target points. Furthermore, the UUV exhibits a more
pronounced advantage in its superior maximum velocity, while
the spherical robot, with greater maximum angular speed,
shows enhanced maneuverability, granting it an edge in in-
tricate navigation and densely obstructed environments.

Finally, the expert policy of the UUV in the target scenario
is selected to generate an offline dataset for subsequent offline
RL training. To be specific, the offline dataset is then utilized



IEEE INTERNET OF THINGS JOURNAL 11

0 40 80 120 160 200 240 280 320 360 400

X-axis (m)

0

30

60

90

120

150

180

210

240

270

300
Y

-a
xi

s 
(m

)
UUV 1
UUV 2
UUV 3
Spherical robot
Avoidance radius
Obstacle area

Moving direction

Initial
points

Successful pursuit

Fig. 14. The trajectories of three UUVs and the target within a single episode
in the target scenario.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

Re
lati

ve 
dis

tan
ce 

(m
)

S t e p s

 U U V  1 - t a r g e t  d i s t a n c e
 U U V  2 - t a r g e t  d i s t a n c e
 U U V  3 - t a r g e t  d i s t a n c e
 T a r g e t  d i s t a n c e  ( 2 5 m )
 S a f e  d i s t a n c e  ( 1 5 m )

Fig. 15. The unsmoothed relative distance curve between each UUV and the
target changing with steps (there are up to 6000 steps in an episode).

for training the DT models, which include three UUV models.
This training process correspondingly results in three loss
curves, as shown in Fig. 13. The initial loss values of 0.843,
0.822 and 0.812 are subsequently reduced to 0.0682, 0.0722
and 0.0745, respectively, indicating the successful completion
of the model training process.

In the subsequent stage of ETFDU, the trained spherical
robot acts as the target, whose task is to evade the pursuit
of UUVs, while the trained DT models are employed in each
UUV, whose task is to pursue the target in UPEG. The DT
models take initial returns-to-go and the initial state of each
UUV as input and accurately predict the next action, which en-
able the UUVs to track the target simultaneously and maneuver
across complex environment. To test final training effect of
ETFDU, we depict trajectories of the UUVs and target in
a single episode, as illustrated in Fig. 14. In addition, the
unsmoothed and smoothed relative distance curves between
each UUV and the target in the last 1400 steps of another
single episode are depicted in Fig. 15 and Fig. 16, respectively.

Observations from Fig. 14 reveal that UUVs successfully
achieve joint pursuit of the target in the complex environment.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 05 0

6 0

7 0

8 0

9 0

1 0 0

Re
lati

ve 
dis

tan
ce 

(m
)

S t e p s

 U U V  1 - t a r g e t  d i s t a n c e
 U U V  2 - t a r g e t  d i s t a n c e
 U U V  3 - t a r g e t  d i s t a n c e

Fig. 16. The smoothed relative distance curve between each UUV and the
target changing with steps (there are up to 6000 steps in an episode).

However, the agility of the spherical robot enables it to
navigate and change directions deftly, thus allowing it to elude
the UUVs’ pursuit effectively. In certain instances, the relative
distance between some UUV and the spherical robot falls
below the maximum target distance li↔T

max (25m), and rarely
below the minimum safe distance, li↔j

min (15m). Moreover,
analysis of Fig. 16 shows that the relative distance between
the UUVs and the target gradually diminishes with each
step, indicating the rounding up of the target by UUVs. The
above simulation outcomes not only highlight the spherical
robot’s flexibility in navigating complex environment, but also
underscore the effectiveness and practicality of the ETFDU
framework, as well as the feasibility of proposed simulator
UPEGSim.

VI. CONCLUSION

In this paper, a simulator named UPEGSim for UUVs dedi-
cated in the UPEG task was developed, which provides an RL
environment to train UUV intelligence in the UPEG task. We
further proposed ETFDU framework, which includes multi-
agent DTDE technology, STT method, and DT based offline
RL technique to assist UUV efficient training. Simulation
experiments were conducted to showcase the effectiveness
and practicality of proposed ETFDU and UPEGSim, which
efficiently train UUVs and target to complete the UPEG
task. Future work will focus on improving the suitability of
UPEGSim and real-world environment to address the sim2real
challenge, and conduct the experiments in real underwater
scenario.

REFERENCES

[1] Z. Wang, Z. Zhang, J. Wang, C. Jiang, W. Wei, and Y. Ren, “AUV-
assisted node repair for IoUT relying on multi-agent reinforcement
learning,” IEEE Internet Things J., vol. 11, no. 3, pp. 4139-4151, Feb.
2024.

[2] Z. Zhang, J. Xu, G. Xie, J. Wang, Z. Han and Y. Ren, ”Environment-
and Energy-Aware AUV-Assisted Data Collection for the Internet of
Underwater Things,” IEEE Internet Things J., vol. 11, no. 15, pp. 26406-
26418, Aug. 2024.



IEEE INTERNET OF THINGS JOURNAL 12

[3] J. Xu, Z. Zhang, J. Wang, Z. Han and Y. Ren, ”Multi-AUV Pursuit-
Evasion Game in the Internet of Underwater Things: An Efficient
Training Framework via Offline Reinforcement Learning,” IEEE Internet
Things J., vol. 11, no. 19, pp. 31273-31286, Oct. 2024.

[4] C. Lin, G. Han, M. Guizani, Y. Bi, J. Du, and L. Shu, “An SDN
architecture for AUV-based underwater wireless networks to enable
cooperative underwater search,” IEEE Wirel. Commun., vol. 27, no. 3,
pp. 132-139, Jun. 2020.

[5] T. R. Player, A. Chakravarty, M. M. Zhang, B. Y. Raanan, B. Kieft,
Y. Zhang, and B. Hobson, “From concept to field tests: Accelerated
development of multi-AUV missions using a high-fidelity faster-than-
real-time simulator,” in Proc. IEEE Int. Conf. Robot. Autom., London,
UK, May-Jun. 2023, pp. 3102-3108.

[6] Y. Mo, S. Ma, H. Gong, Z. Chen, J. Zhang, and D. Tao, “Terra: A
smart and sensible digital twin framework for robust robot deployment
in challenging environments,” IEEE Internet Things J., vol. 8, no. 18,
pp. 14039-14050, Sep. 2021.

[7] X. Dai, C. Ke, Q. Quan, and K. Y. Cai, “RFlySim: Automatic test
platform for UAV autopilot systems with FPGA-based hardware-in-the-
loop simulations,” Aerosp. Sci. Technol., vol. 114, Jul. 2021, Art no.
106727.

[8] M. R. Kabir, B. B. Y. Ravi, and S. Ray, “A virtual prototyping platform
for exploration of vehicular electronics,” IEEE Internet Things J., vol.
10, no. 18, pp. 16144-16155, Sep. 2023.

[9] L. Hong, X. Wang, D. S. Zhang, M. Zhao, and H. Xu, “Vision-based
underwater inspection with portable autonomous underwater vehicle:
Development, control, and evaluation,” IEEE Trans. Intell. Veh., vol.
9, no. 1, pp. 2197-2209, Jan. 2024.

[10] A. Amer, O. Álvarez-Tuñón, H. İ. Uğurlu, J. L. F. Sejersen, Y. Brodskiy,
and E. Kayacan, “UNav-sim: A visually realistic underwater robotics
simulator and synthetic data-generation framework,” in Proc. Int. Conf.
Adv. Robot., Abu Dhabi, United Arab Emirates, Dec. 2023, pp. 570-576.

[11] O. Álvarez-Tuñón, H. Kanner, L. R. Marnet, H. X. Pham, J. L. F.
Sejersen, Y. Brodskiy, and E. Kayacan, “Mimir-UW: A multipurpose
synthetic dataset for underwater navigation and inspection,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Detroit, MI, USA, Oct. 2023,
pp. 6141-6148.

[12] X. Hou, J. Wang, T. Bai, Y. Deng, Y. Ren, and L. Hanzo, “Environment-
Aware AUV Trajectory Design and Resource Management for Multi-
Tier Underwater Computing,” IEEE Journal on Selected Areas in
Communications. vol. 41, no. 2, pp. 474-490, Feb. 2023.

[13] Z. Zhang, J. Xu, J. Du, W. Mi, Z. Wang, Z. Li, and Y. Ren, ”UUVSim:
Intelligent Modular Simulation Platform for Unmanned Underwater Ve-
hicle Learning,” in International Joint Conference on Neural Networks,
Yokohama, Japan, July. 2024, pp. 1-8.

[14] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T.
Rauschenbach, “UUV simulator: A gazebo-based package for under-
water intervention and multi-robot simulation,” in OCEANS MTS/IEEE
Monterey, Monterey, CA, USA, Sep. 2016, pp. 1-8.

[15] Z. Zhang, W. Mi, J. Du, Z. Wang, W. Wei, Y. Zhang, Y. Yang, and
Y. Ren, “Design and implementation of a modular UUV simulation
platform,” Sensors, vol. 22, no. 20, pp. 8043, Oct. 2022.

[16] J. Pitz, L. Röstel, L. Sievers, and B. Bäuml, “Dextrous tactile in-hand
manipulation using a modular reinforcement learning architecture,” in
Proc. IEEE Int. Conf. Robot. Autom., London, UK, May-Jun. 2023, pp.
1852-1858.

[17] S. S. Samsani and M. S. Muhammad, “Socially compliant robot navi-
gation in crowded environment by human behavior resemblance using
deep reinforcement learning,” IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5223-5230, Jul. 2021.

[18] J. Kumar, C. S. Raut, and N. Patel, “Automated flexible needle trajectory
planning for keyhole neurosurgery using reinforcement learning,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Kyoto, Japan, Oct. 2022,
pp. 4018-4023.

[19] X. Hou, J. Wang, C. Jiang, Z. Meng, J. Chen, and Y. Ren, “Efficient
Federated Learning for Metaverse via Dynamic User Selection, Gradient
Quantization and Resource Allocation,” IEEE Journal on Selected Areas
in Communications. vol. 42, no. 4, pp. 850-866, Apr. 2024.

[20] P. Liu, K. Zhang, D. Tateo, S. Jauhri, Z. Hu, J. Peters, and G.
Chalvatzaki, “Safe reinforcement learning of dynamic high-dimensional
robotic tasks: navigation, manipulation, interaction,” in Proc. IEEE Int.
Conf. Robot. Autom., London, UK, May-Jun. 2023, pp. 9449-9456.

[21] J. Yao, Q. Qian, and J. Hu, ”Multi-modal Proxy Learning towards Per-
sonalized Visual Multiple Clustering”, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle WA,
USA, Jun. 2024, pp. 14066-14075.

[22] X. Sun, B. Sun, and Z. Su, ”Cooperative Pursuit-Evasion Game for
Multi-AUVs in the Ocean Current and Obstacle Environment”, in
Intelligent Robotics and Applications, Singapore, Oct. 2023, pp. 201-
213.

[23] D. Yu, H. Wang, W. Huang, and S. Huang, ”Application of Extended
Game in Multi-UUV Pursuit-Escape Task”, in International Conference
on Offshore Mechanics and Arctic Engineering, Melbourne, Australia,
Jun. 2023, pp. V005T06A096.

[24] R. Zhang, Q. Zong, X. Zhang, L. Dou, and B. Tian, “Game of drones:
Multi-UAV pursuit-evasion game with online motion planning by deep
reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
no. 10, pp. 7900–7909, Oct. 2023.

[25] C. C. Wang, Y. L. Wang, P. Shi, and F. Wang, “Scalable-
MADDPG-based cooperative target invasion for a multi-USV sys-
tem,” IEEE Trans. Neural Netw. Learn. Syst., early access, doi:
10.1109/TNNLS.2023.3309689.

[26] J. Wu, C. Song, J. Ma, J. Wu, and G. Han, “Reinforcement learning and
particle swarm optimization supporting real-time rescue assignments for
multiple autonomous underwater vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 7, pp. 6807–6820, Jul. 2022.

[27] J. Yao, C. Li, K. Sun, Y. Cai, H. Li, W. Ouyang, and H. Li, ”Ndc-
scene: Boost monocular 3d semantic scene completion in normalized
device coordinates space”, in IEEE/CVF International Conference on
Computer Vision (ICCV), Paris, France, Oct. 2023, pp. 9421-9431.

[28] X. Cao, L. Ren, and C. Sun, “Dynamic target tracking control of
autonomous underwater vehicle based on trajectory prediction,” IEEE
Trans. Cybern., vol. 53, no. 3, pp. 1968–1981, Mar. 2023.

[29] M. Zhang, H. Chen, and W. Cai, “M. Zhang, H. Chen and W. Cai,
”Hunting Task Allocation for Heterogeneous Multi-AUV Formation
Target Hunting in IoUT: A Game Theoretic Approach,” IEEE Internet
Things J., vol. 11, no. 5, pp. 9142-9152, March. 2024.

[30] W. Liu, K. Bai, X. He, S. Song, C. Zheng, and X. Liu, “FishGym: A
high-performance physics-based simulation framework for underwater
robot learning,” in Proc. IEEE Int. Conf. Robot. Autom., Philadelphia,
PA, USA, May. 2022, pp. 6268-6275.

[31] M. Prats, J. Perez, J. J. Fernández, and P. J. Sanz, “An open source tool
for simulation and supervision of underwater intervention missions,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura-Algarve,
Portuga, Oct. 2012, pp. 2577-2582.

[32] P. Kormushev and D. G. Caldwell, “Towards improved AUV control
through learning of periodic signals,” in Proc. OCEANS-San Diego, San
Diego, CA, USA, Sep. 2013, pp. 1-4.

[33] A. T. Ngo, N. H. Tran, T. P. Ton, H. Nguyen, and T. P. Tran, “Simulation
of hybrid autonomous underwater vehicle based on ROS and Gazebo,”
in Proc. Int. Conf. Adv. Technol. Commun., Ho Chi Minh City, Vietnam,
Oct. 2021, pp. 109-113.

[34] Y. Nie, X. Luan, W. Gan, T. Ou, and D. Song, “Design of marine
virtual simulation experiment platform based on Unity3D,” in Proc.
Glob. Oceans 2020: Singap.-US Gulf Coast, Biloxi, MS, USA, Oct.
2020, pp. 1-5.

[35] X. Hou, J. Wang, C. Jiang, X. Zhang, Y. Ren, and M. Debbah, “UAV-
Enabled Covert Federated Learning,” IEEE Transactions on Wireless
Communications. vol. 22, no. 10, pp. 6793-6809, Oct. 2023.

[36] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826-3839, Sep.
2020.

[37] X. Pan, J. Yao, H. Kou, T. Wu, and C. Xiao, ”HarmonicNeRF:
Geometry-informed synthetic view augmentation for 3D scene recon-
struction in driving scenarios,” in ACM Multimedia, Melbourne, Aus-
tralia, Oct. 2024, pp. 1-10.

[38] C. Paduraru, D. Mankowitz, G. Dulac-Arnold, J. Li, N. Levine, S.
Gowal, and T. Hester, “Challenges of real-world reinforcement learning:
Definitions, benchmarks and analysis,” Mach. Learn., vol. 110, no. 9,
pp. 2419–2468, Sep. 2021.

[39] F. Muratore, M. Gienger, and J. Peters, “Assessing transferability from
simulation to reality for reinforcement learning,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 4, pp. 1172-1183, Apr. 2021.

[40] W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa, and M. Hayashibe, “A survey
of sim-to-real transfer techniques applied to reinforcement learning for
bioinspired robots,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no.
7, pp. 3444-3459, Jul. 2023.

[41] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoel-
lig, “Learning to fly—A gym environment with pybullet physics for
reinforcement learning of multi-agent quadcopter control,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Prague, Czech Republic, Sep-
Oct. 2021, pp. 7512-7519.



IEEE INTERNET OF THINGS JOURNAL 13

[42] Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen, “Panda-gym:
Open-source goal-conditioned environments for robotic learning,” Proc.
4th Robot Learn. Workshop: Self-Supervised Lifelong Learn., Dec. 2021.

[43] J. Wu, C. Song, J. Ma, J. Wu, and G. Han, “Reinforcement learning and
particle swarm optimization supporting real-time rescue assignments for
multiple autonomous underwater vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 7, pp. 6807–6820, Jul. 2022.

[44] A. Signori, F. Chiariotti, F. Campagnaro, and M. Zorzi, “A game-
theoretic and experimental analysis of energy-depleting underwater
jamming attacks,” IEEE Internet Things J., vol. 7, no. 10, pp. 9793–
9804, Oct. 2020.

[45] A. Signori, F. Chiariotti, F. Campagnaro, R. Petroccia, K. Pelekanakis, P.
Paglierani, J. Alves, and M. Zorzi, “A geometry-based game theoretical
model of blind and reactive underwater jamming,” IEEE Trans. Wirel.
Commun., vol. 21, no. 6, pp. 3737–3751, Jun. 2022.

[46] W. Wei, J. Wang, J. Du, Z. Fang, Y. Ren, and C. L. P. Chen, “Dif-
ferential game-based deep reinforcement learning in underwater target
hunting task,” IEEE Trans. Neural Netw. Learn. Syst., early access, doi:
10.1109/TNNLS.2023.3325580.

[47] Z. Xia, J. Du, J. Wang, C. Jiang, Y. Ren, G. Li, and Z. Han, “Multi-agent
reinforcement learning aided intelligent UAV swarm for target tracking,”
IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 931–945, Jan. 2022.

[48] J. Kapukotuwa, B. Lee, D. Devine, and Y. Qiao, “MultiROS: ROS-
based robot simulation environment for concurrent deep reinforcement
learning,” in Proc. IEEE Int. Conf. Automat. Sci. Eng., Mexico City,
Mexico, Aug. 2022, pp. 1098-1103.

[49] M. Zhang, H. Chen, and W. Cai, “Hunting task allocation for het-
erogeneous multi-AUV formation target hunting in IoUT: A game
theoretic approach,” IEEE Internet Things J., early access, doi:
10.1109/JIOT.2023.3322197.

[50] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk,
“Comprehensive simulation of quadrotor UAVs using ROS and gazebo,“
in Proc. IEEE 3rd Int. SIMPAR., Tsukuba, Japan, Nov. 2012, pp.
400–411.

[51] D. R. Yoerger, J. G. Cooke, and J.-J. E. Slotine, “The influence of
thruster dynamics on underwater vehicle behavior and their incorpo-
ration into control system design,” IEEE J. Ocean. Eng., vol. 15, no. 3,
pp. 167–178, Jul. 1990.

[52] W. Bessa, M. Dutra and E. Kreuzer, “Dynamic positioning of underwater
robotic vehicles with thruster dynamics compensation,” Int. J. Adv.
Robot. Syst., vol. 10, no. 9, pp. 1-8, Apr. 2013.

[53] H. Zhao, J. Yan, X. Luo, and X. Guan, “Ubiquitous tracking for au-
tonomous underwater vehicle with IoUT: A rigid-graph-based solution,”
IEEE Internet Things J., vol. 8, no. 18, pp. 14094–14109, Sep. 2021.

[54] M. T. Isik and O. B. Akan, “A three dimensional localization algorithm
for underwater acoustic sensor networks,”IEEE Trans. Wireless Com-
mun., vol. 8, no. 9, pp. 4457–4463, Sep. 2009.

[55] P. Jiang, S. Song, and G. Huang, “Attention-based meta-reinforcement
learning for tracking control of AUV with time-varying dynamics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 6388–6401, Nov.
2022.

[56] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,” in Proc. Int. Conf. Mach. Learn., Stockholmsmässan,
Stockholm, Sweden, Jul. 2018, pp. 1861–1870.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, Dec. 2017, pp.
6000–6010.

[58] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, “Decision Transformer: Reinforcement
Learning via Sequence Modeling,” in Proc. Adv. Neural Inf. Process.
Syst., Dec. 2021, pp. 15084-15097.

Jingzehua Xu (Student Member, IEEE) received his
B.S. degree in Marine Science, and B.E. degree in
Electronic Science and Technology from Zhejiang
University, Hangzhou, China in 2023. He is currently
pursuing the M.S. Degree in Electronic Informa-
tion from Tsinghua Shenzhen International Graduate
School, Tsinghua University, China. His main re-
search interests include reinforcement learning, large
language models, and underwater robots. Besides, he
is the outstanding graduate in Zhejiang University.

Guanwen Xie (Student Member, IEEE) received his
B.E. degree in Ocean Engineering and Technology
at Ocean College from Zhejiang University, and he
is currently pursuing the M.S. degree in Electronic
Information from Tsinghua Shenzhen International
Graduate School, Tsinghua University, China. His
main research interest is applying reinforcement
learning to underwater robots and large language
models. Besides, he is also the outstanding graduate
in Zhejiang University.

Zekai Zhang received the B.S. degree in Elec-
tronic Engineering from North University of China,
Shanxi, China, in 2021. He is currently pursuing the
M.S. degree in Electronic Information at Tsinghua
Shenzhen International Graduate School, Tsinghua
University, Shenzhen, China. His research interests
include robot simulation technology, multi-agent co-
operation and industrial applications.

Xiangwang Hou (Graduate student Member, IEEE)
is currently pursuing his Ph.D. degree in the Depart-
ment of Electronic Engineering at Tsinghua Univer-
sity, Beijing, China. Since 2023, he has been a Joint
Ph.D. student in the College of Computing and Data
Science at Nanyang Technological University, under
the supervision of Prof. Dusit Niyato, Singapore.
From 2020 to 2021, he worked as an algorithm
engineer at Huawei Technologies Co., Ltd. and in the
Department of Electronic Engineering at Tsinghua
University. His research interests include federated

learning, wireless AI, and UAV/AUV networks.

Shuai Zhang (Member, IEEE) received his B.E.
degree from the University of Science and Tech-
nology of China, Hefei, China, in 2016, and his
Ph.D. degree from Rensselaer Polytechnic Institute,
Troy, NY, USA, in 2021. From 2022 to 2023, he
was a Postdoctoral Research Associate at Rensselaer
Polytechnic Institute. He is currently an Assistant
Professor in the Department of Data Science at
the New Jersey Institute of Technology, Newark,
NJ, USA. His research focuses on the theoretical
foundations of deep learning and the development

of principled, efficient algorithms to improve the reliability and performance
of AI applications. He has served as a reviewer or program committee
member for NeurIPS, ICML, AAAI, ICLR, AISTATS, TMLR, IEEE TSP,
IEEE TNNLS, and IEEE TIT.

Yong Ren (Senior Member, IEEE) received his B.S,
M.S and Ph.D. degrees in electronic engineering
from Harbin Institute of Technology, China, in 1984,
1987, and 1994, respectively. He worked as a post
doctor at Department of Electronics Engineering,
Tsinghua University, China from 1995 to1997. Now
he is a professor of Department of Electronics En-
gineering, and the director of the Complexity Engi-
neered Systems Lab (CESL) in Tsinghua University.
He holds 60 patents, and has authored or co-authored
more than 300 technical papers in the behavior of

computer network, P2P network and cognitive networks. His current research
interests include maritime information networks, and swarm intelligence.

Dusit Niyato (Fellow, IEEE) is a professor in the
College of Computing and Data Science, at Nanyang
Technological University, Singapore. He received
B.Eng. from King Mongkuts Institute of Technology
Ladkrabang (KMITL), Thailand and Ph.D. in Elec-
trical and Computer Engineering from the University
of Manitoba, Canada. His research interests are in
the areas of mobile generative AI, edge intelligence,
decentralized machine learning, and incentive mech-
anism design.


